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Summary: The optically active (2R,3R)-3-[(3R)-(E)-Benzyloxymethoxy-5-methyl-l- 

hexenyll-2-(3-butenyl)-2-methyl-1-cyclopentanone (8) was synthesized as a 

precursor of vitamin D3(5) by palladium-catalyzed syn-SN2' cyclization of 

[Z,Z(22S,23R)]-ene oxide 6 as a key reaction. 

1,3-Chirality transfer reactions such as [3,3]-sigmatropic rearrange- 

ments') and Pd-catalyzed allylations 2, are important and useful synthetic 

methods and have been studied extensively. The stereochemical outcomes in the 

Claisen rearrangement (supra-facial SN2' alkylation) and the Pd-catalyzed 

cyclization (double inversion mechanism)3) of allylic compounds are identi- 

ca14). We have recently shown that the vicinal stereochemistry at C(17) and 

C(20) in the de-AB-cholestane 4 can be constructed by two Claisen rearrange- 

ments (l-*2,3+4) as shown in Scheme 15). We report here the stereoselective 

chiral synthesis of 2,2,3_trisubstituted cyclopentanone 8 as a precursor of 

Vitamin D3(5) by Pd-catalyzed reaction of ene oxide and Claisen rearrangement. 

As outlined in Scheme 2, the key step in our synthesis is the Pd-catalyzed 

stereocontrolled cyclization of the ene oxide 6 to introduce the desired 

relative stereochemistry at C(17) and C(23) as well as the geometry of the 

[20,(22)E]-olefin in the lactone 7. This allylic system can be utilized to 

introduce the C(20)-methyl stereoselectively by combination of Claisen 

rearrangement and decarbonylation promoted by a rhodium complex as described 

before5). The formal 3-butenylation of the lactone 7 by the Pd-catalyzed 
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alkylation with allylic carbonate 24 followed by hydrogenolysis with formate , 6) 

the transformation of methoxy carbonyl group to the C(13)-methyl and the 

conversion of 6-lactone to the cyclopentanone by applying the protected cyano- 

hydrin method afford the ketone 8. 

We have reported') that Pd-catalyzed cyclizations of (E,E)- and (Z,E)-ene 

oxides such as 9 and 11 proceeded in the absence of a base, to give the 6- 

lactones 19 and 20, respectively, with high regio-and stereoselection by double 

inversion mechanism (inversions in the Pd-assisted ionization and in the 

nucleophilic addition). Recently we have also foundl) crucial effects of a base 

and the catalyst concentration on the racemization of x-allylpalladium formed 

from allylic carbonates; the higher concentration of palladium and absence of a 

base induced the partial racemization of r-allylpalladium. Therefore, at first, 

we reexamined whether the racemization of the 8-allylpalladium developed from 

ene oxides-9,10,11 and 12 would arise under the neutral condition. Cyclizations 

were carried out as previously described7). Reactions of 9 and 12 gave the 6- 

. lactones 19 and 20 in 70-80% yield with extremely high stereoselectivity 

(>98%)8) via syn, syn-Pd complexes 15 and 18 respectively. Cyclizations of 10 

and 11 proceeded through either Rd complex 16 (anti, syn) OK 15 (syn, syn) 

drived from 16 via TI-0-n interconversion in the case of 10 and Pd complex 17 

(anti, syn) OK 18 (syn, syn) in the case of 11, respectively, to give the A- 

lactones 19 and 208). The chemical yield and stereoselectivity in the cycliza- 

tions of 10 and llwere almost same as those in cyclizations of 9 and 12. In 

all cyclizations, the eight-membered lactone') and the Z-olefinic isomer were 

not formed. Moreover the racemization of n-allylpalladium formed from ene 

oxides was not dependent on catalyst concentration(5-20 mol%) . The higher 

stability of the n-allylpalladium formed from ene oxides than that formed from 

allylic carbonates can be explained by neighboring-group effect of the hydroxy 

as shown in 15,16,17 and 18. 

II:’ Me023 Me02C 

I - I - 

Reactlon condition: 2-10 mOl% Of uJ 
15-60 mol% of B in THF at 25'C for 
0,5-4h. 

Scheme 3 
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Results of these cyclizations predict that [E,E(22R,23R)]-9 and 

[Z,Z(22S,23R)]-10 should provide the desired chiral lactone 7 with 17(R) and 

23(R) configuration. We prepared herein [Z,Z(22S,23R) l-6 as follows. Sharpless 

epoxidation") [(+)-DET/Ti(DiPr)4/TBHP] of 5-methyl-(2Z)-hexene-l-01 gave the 

epoxy alcohol 21 ; [aIt -5.2O,(c 1.76, CHC13), 95%e.e., in 80% yield. Swern 

oxidation [Me2S0,(COC1)2 in CH2C12 then Et3N] of 21, followed by Wittig reac- 

tionll) of the resulting aldehyde with ylide 22, prepared from 

HOCH2CH2CH2PPh3Br /n-BuLi then Me3SiC1 , gave the (Z,Z)-ene oxide 23 in 47% 

overall yield. The (E,Z)-isomer of 23 was formed in less than 5% yield. Esteri- 

fication of 23 with methyl hydrogen malonate by Mitsunobu method12) gave the 

(+)-ester 6 ; [ali +55.2O, (c 0.99, CHC13), in 80% yield. Pd-catalyzed cycliz- 

ation [2.4mol% of Pd2(tba)3CHC13, llmol% of dppe in THF at 25OC for lOh] of 6 

gave the lactone 7 in 80% yield. The direct 3-butenylation13) of 7 with 3- 

butenyl iodide under a basic condition [K2C03/acetone reflux] was unsuccessful. 

Then we attempted the indirect butenylation as follows. Pd-catalyzed alkylation 

of 7 with the allylic carbonate 24 proceeded stereoselectively to give the 

lactone 25 in 51% yield. The C(13)-stereoisomer of 25 was not found in the 

crude mixture'l). Pd-catalyzed hydrogenolysis of the resulting allylic acetate 

25 with formic acid and Et3N gave the lactone 26 in 98% yield6). The resulting 

terminalolefin in 26 can be used as the methylketone15) which is necessary to 

construct C-ring in the last step of the synthesis. Carbonyl groups of ester 

and lactone in 26 were simultaneously reduced with diisobutylaluminium hydride 

to give the hemiacetal 27a in 76% yield. Selective monotosylation of 27a and 

synchronous reductions of the tosyl and lactol groups with lithium aluminium 

hydride gave the diol 28; [ali +68.2O, (c 1.45, CHC13), 'H, NMR 6 0.79(18-Me), 

in 61% yield. Transformation of 28 to 8 was carried out in a similar manner as 
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reported before5). Selective monotosylation of the dial 28 and oxidation of the 

residual alcohol with pyridium chlorochromate gave the aldehyde 29 in 64% 

overall yield. Cyanohydrin formation of 29 in two steps (85% yield), 

cyclization16) of the protected cyanohydrin 30 with NaN(SiMe3)2 (90% yield) and 

conversion of the cyclized product to the cyclopentanone with acid and base 

gave the ketone 8; [aIt +52.6O, (c 0.31, CHC13), ‘Ii, NMR 6 0.83(18-Me). 
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